Journal Title:Evolving Systems
Evolving Systems covers surveys, methodological, and application-oriented papers in the area of dynamically evolving systems. ‘Evolving systems’ are inspired by the idea of system model evolution in a dynamically changing and evolving environment. In contrast to the standard approach in machine learning, mathematical modelling and related disciplines where the model structure is assumed and fixed a priori and the problem is focused on parametric optimisation, evolving systems allow the model structure to gradually change/evolve. The aim of such continuous or life-long learning and domain adaptation is self-organization. It can adapt to new data patterns, is more suitable for streaming data, transfer learning and can recognise and learn from unknown and unpredictable data patterns. Such properties are critically important for autonomous, robotic systems that continue to learn and adapt after they are being designed (at run time).
Evolving Systems solicits publications that address the problems of all aspects of system modelling, clustering, classification, prediction and control in non-stationary, unpredictable environments and describe new methods and approaches for their design.
The journal is devoted to the topic of self-developing, self-organised, and evolving systems in its entirety — from systematic methods to case studies and real industrial applications. It covers all aspects of the methodology such as
Evolving Systems methodology
Evolving Neural Networks and Neuro-fuzzy Systems
Evolving Classifiers and Clustering
Evolving Controllers and Predictive models
Evolving Explainable AI systems
Evolving Systems applications
but also looking at new paradigms and applications, including medicine, robotics, business, industrial automation, control systems, transportation, communications, environmental monitoring, biomedical systems, security, and electronic services, finance and economics. The common features for all submitted methods and systems are the evolving nature of the systems and the environments.
The journal is encompassing contributions related to:
1) Methods of machine learning, AI, computational intelligence and mathematical modelling
2) Inspiration from Nature and Biology, including Neuroscience, Bioinformatics and Molecular biology, Quantum physics
3) Applications in engineering, business, social sciences.
《進(jìn)化系統(tǒng)》涵蓋了動(dòng)態(tài)進(jìn)化系統(tǒng)領(lǐng)域的調(diào)查、方法論和應(yīng)用導(dǎo)向論文。‘進(jìn)化系統(tǒng)’的靈感來(lái)自于動(dòng)態(tài)變化和進(jìn)化環(huán)境中系統(tǒng)模型進(jìn)化的理念。與機(jī)器學(xué)習(xí)、數(shù)學(xué)建模和相關(guān)學(xué)科中的標(biāo)準(zhǔn)方法不同,這些方法假設(shè)并先驗(yàn)地固定模型結(jié)構(gòu),問(wèn)題集中在參數(shù)優(yōu)化上,而進(jìn)化系統(tǒng)允許模型結(jié)構(gòu)逐漸改變/進(jìn)化。這種持續(xù)或終身學(xué)習(xí)和領(lǐng)域適應(yīng)的目的是自我組織。它可以適應(yīng)新的數(shù)據(jù)模式,更適合流數(shù)據(jù)、遷移學(xué)習(xí),并且可以識(shí)別和學(xué)習(xí)未知和不可預(yù)測(cè)的數(shù)據(jù)模式。這些特性對(duì)于自主機(jī)器人系統(tǒng)至關(guān)重要,因?yàn)檫@些系統(tǒng)在設(shè)計(jì)完成后(運(yùn)行時(shí))會(huì)繼續(xù)學(xué)習(xí)和適應(yīng)。
《Evolving Systems》征集的出版物旨在解決非平穩(wěn)、不可預(yù)測(cè)環(huán)境中系統(tǒng)建模、聚類(lèi)、分類(lèi)、預(yù)測(cè)和控制的各個(gè)方面的問(wèn)題,并描述其設(shè)計(jì)的新方法和途徑。
該期刊致力于從系統(tǒng)方法到案例研究和實(shí)際工業(yè)應(yīng)用的自我開(kāi)發(fā)、自我組織和進(jìn)化系統(tǒng)的主題。它涵蓋了方法論的各個(gè)方面,例如
不斷發(fā)展的系統(tǒng)方法
不斷發(fā)展的神經(jīng)網(wǎng)絡(luò)和神經(jīng)模糊系統(tǒng)
不斷發(fā)展的分類(lèi)器和聚類(lèi)
不斷發(fā)展的控制器和預(yù)測(cè)模型
不斷發(fā)展的可解釋人工智能系統(tǒng)
不斷發(fā)展的系統(tǒng)應(yīng)用
而且還關(guān)注新的范式和應(yīng)用,包括醫(yī)學(xué)、機(jī)器人、商業(yè)、工業(yè)自動(dòng)化、控制系統(tǒng)、交通、通信、環(huán)境監(jiān)測(cè)、生物醫(yī)學(xué)系統(tǒng)、安全和電子服務(wù)、金融和經(jīng)濟(jì)。所有提交的方法和系統(tǒng)的共同特征是系統(tǒng)和環(huán)境的不斷發(fā)展。
該期刊涵蓋與以下內(nèi)容相關(guān)的貢獻(xiàn):
1)機(jī)器學(xué)習(xí)、人工智能、計(jì)算智能和數(shù)學(xué)建模方法
2)來(lái)自自然和生物學(xué)的靈感,包括神經(jīng)科學(xué)、生物信息學(xué)和分子生物學(xué)、量子物理學(xué)
3)在工程、商業(yè)、社會(huì)科學(xué)中的應(yīng)用。
Evolving Systems由SPRINGER HEIDELBERG出版商出版,收稿方向涵蓋COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE全領(lǐng)域,此期刊水平偏中等偏靠后,在所屬細(xì)分領(lǐng)域中專(zhuān)業(yè)影響力一般,過(guò)審相對(duì)較易,如果您文章質(zhì)量佳,選擇此期刊,發(fā)表機(jī)率較高。平均審稿速度 ,影響因子指數(shù)2.7,該期刊近期沒(méi)有被列入國(guó)際期刊預(yù)警名單,廣大學(xué)者值得一試。
大類(lèi)學(xué)科 | 分區(qū) | 小類(lèi)學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
計(jì)算機(jī)科學(xué) | 4區(qū) | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計(jì)算機(jī):人工智能 | 4區(qū) | 否 | 否 |
名詞解釋?zhuān)?br />中科院分區(qū)也叫中科院JCR分區(qū),基礎(chǔ)版分為13個(gè)大類(lèi)學(xué)科,然后按照各類(lèi)期刊影響因子分別將每個(gè)類(lèi)別分為四個(gè)區(qū),影響因子5%為1區(qū),6%-20%為2區(qū),21%-50%為3區(qū),其余為4區(qū)。
大類(lèi)學(xué)科 | 分區(qū) | 小類(lèi)學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
計(jì)算機(jī)科學(xué) | 4區(qū) | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計(jì)算機(jī):人工智能 | 4區(qū) | 否 | 否 |
大類(lèi)學(xué)科 | 分區(qū) | 小類(lèi)學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
計(jì)算機(jī)科學(xué) | 4區(qū) | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計(jì)算機(jī):人工智能 | 4區(qū) | 否 | 否 |
大類(lèi)學(xué)科 | 分區(qū) | 小類(lèi)學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
工程技術(shù) | 4區(qū) | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計(jì)算機(jī):人工智能 | 4區(qū) | 否 | 否 |
大類(lèi)學(xué)科 | 分區(qū) | 小類(lèi)學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
計(jì)算機(jī)科學(xué) | 4區(qū) | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計(jì)算機(jī):人工智能 | 4區(qū) | 否 | 否 |
按JIF指標(biāo)學(xué)科分區(qū) | 收錄子集 | 分區(qū) | 排名 | 百分位 |
學(xué)科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | SCIE | Q3 | 101 / 197 |
49% |
按JCI指標(biāo)學(xué)科分區(qū) | 收錄子集 | 分區(qū) | 排名 | 百分位 |
學(xué)科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | SCIE | Q3 | 122 / 198 |
38.64% |
名詞解釋?zhuān)?br />WOS即Web of Science,是全球獲取學(xué)術(shù)信息的重要數(shù)據(jù)庫(kù),Web of Science包括自然科學(xué)、社會(huì)科學(xué)、藝術(shù)與人文領(lǐng)域的信息,來(lái)自全世界近9,000種最負(fù)盛名的高影響力研究期刊及12,000多種學(xué)術(shù)會(huì)議多學(xué)科內(nèi)容。給期刊分區(qū)時(shí)會(huì)按照某一個(gè)學(xué)科領(lǐng)域劃分,根據(jù)這一學(xué)科所有按照影響因子數(shù)值降序排名,然后平均分成4等份,期刊影響因子值高的就會(huì)在高分區(qū)中,最后的劃分結(jié)果分別是Q1,Q2,Q3,Q4,Q1代表質(zhì)量最高。
CiteScore | SJR | SNIP | CiteScore排名 | ||||||||||||||||||||
7.8 | 0.746 | 1.022 |
|
名詞解釋?zhuān)?br />CiteScore:衡量期刊所發(fā)表文獻(xiàn)的平均受引用次數(shù)。
SJR:SCImago 期刊等級(jí)衡量經(jīng)過(guò)加權(quán)后的期刊受引用次數(shù)。引用次數(shù)的加權(quán)值由施引期刊的學(xué)科領(lǐng)域和聲望 (SJR) 決定。
SNIP:每篇文章中來(lái)源出版物的標(biāo)準(zhǔn)化影響將實(shí)際受引用情況對(duì)照期刊所屬學(xué)科領(lǐng)域中預(yù)期的受引用情況進(jìn)行衡量。
是否OA開(kāi)放訪(fǎng)問(wèn): | h-index: | 年文章數(shù): |
未開(kāi)放 | -- | 74 |
Gold OA文章占比: | 2021-2022最新影響因子(數(shù)據(jù)來(lái)源于搜索引擎): | 開(kāi)源占比(OA被引用占比): |
5.48% | 2.7 | 0.03... |
研究類(lèi)文章占比:文章 ÷(文章 + 綜述) | 期刊收錄: | 中科院《國(guó)際期刊預(yù)警名單(試行)》名單: |
94.59% | SCIE | 否 |
歷年IF值(影響因子):
歷年引文指標(biāo)和發(fā)文量:
歷年中科院JCR大類(lèi)分區(qū)數(shù)據(jù):
歷年自引數(shù)據(jù):
2023-2024國(guó)家/地區(qū)發(fā)文量統(tǒng)計(jì):
國(guó)家/地區(qū) | 數(shù)量 |
Greece | 39 |
India | 28 |
Iran | 17 |
Algeria | 12 |
USA | 8 |
GERMANY (FED REP GER) | 7 |
Brazil | 6 |
England | 6 |
France | 6 |
Scotland | 6 |
2023-2024機(jī)構(gòu)發(fā)文量統(tǒng)計(jì):
機(jī)構(gòu) | 數(shù)量 |
DEMOCRITUS UNIVERSITY OF THRACE | 14 |
ISLAMIC AZAD UNIVERSITY | 10 |
UNIVERSITY OF PIRAEUS | 8 |
UNIVERSITY OF PATRAS | 7 |
DEMOCRITUS UNIV THRACE | 5 |
IONIAN UNIVERSITY | 5 |
UNIVERSITE BADJI MOKHTAR - ANNAB... | 4 |
UNIVERSITY OF CRAIOVA | 4 |
ARISTOTLE UNIVERSITY OF THESSALO... | 3 |
AUCKLAND UNIVERSITY OF TECHNOLOG... | 3 |
近年文章引用統(tǒng)計(jì):
文章名稱(chēng) | 數(shù)量 |
Discussion and review on evolvin... | 21 |
Neutrosophic soft set decision m... | 15 |
Fuzzy and neutrosophic modeling ... | 13 |
Designing multi-layer quantum ne... | 8 |
Density-based clustering of big ... | 6 |
ACFLN: artificial chemical funct... | 5 |
Deep learning for finger-knuckle... | 5 |
Evolving, dynamic clustering of ... | 4 |
Vessel traffic flow analysis and... | 4 |
Infinite impulse response system... | 3 |
同小類(lèi)學(xué)科的其他優(yōu)質(zhì)期刊 | 影響因子 | 中科院分區(qū) |
Journal Of Field Robotics | 4.2 | 2區(qū) |
Computer Science Review | 13.3 | 1區(qū) |
Computer Networks | 4.4 | 2區(qū) |
Journal Of Computational Science | 3.1 | 3區(qū) |
Ict Express | 4.1 | 3區(qū) |
Computer Speech And Language | 3.1 | 3區(qū) |
Applied Artificial Intelligence | 2.9 | 4區(qū) |
Iet Software | 1.5 | 4區(qū) |
International Journal Of Approximate Reasoning | 3.2 | 3區(qū) |
Journal Of Bionic Engineering | 4.9 | 3區(qū) |
若用戶(hù)需要出版服務(wù),請(qǐng)聯(lián)系出版商:TIERGARTENSTRASSE 17, HEIDELBERG, GERMANY, D-69121。